PyTorch官方博客最新发布的ParetoQ训练算法在低比特量化领域取得重大突破。该技术首次实现了二元(1-bit)、三元(1.58-bit)和2至4位量化的统一框架,并在所有量化级别上均达到当前最优性能。这一突破性进展尤其适...
Read More近期,Hugging Face发布了一项名为AutoRound的后训练量化技术,该技术能够在保持模型性能和效率的同时,显著提升低比特量化模型的精度。这一突破性进展为边缘计算和移动端设备部署轻量级AI模型提供了新的可能性,解...
Read More近日,OmniServe发布了一个全新的统一框架,旨在优化大规模LLM(大语言模型)的部署效率。该框架结合了低比特量化和稀疏注意力机制等创新技术,显著提升了模型推理速度并降低了成本。通过低比特量化,OmniServe能够...
Read More