Meta旗下FAIR研究团队在arXiv最新论文中提出重大架构革新,通过名为Dynamic Tanh(DyT)的逐元素操作替代传统归一化层,使Transformer模型在保持性能的同时摆脱了对归一化层的依赖。这种S型曲线模拟技术能够自然复现...
Read MoreTransformer模型在自然语言处理和其他领域取得了显著的成功,而其核心之一是层归一化(Layer Normalization)。然而,最新的研究提出了一种替代方案:通过精心设计的tanh函数,可以在不依赖层归一化的情况下保持模型...
Read More研究人员开发出一种名为共享特征校准(SFC)的方法,以增强语义分割。这个方法通过在特征图上进行跨层归一化,来缩小不同层次特征图之间的差异,从而提高了模型的性能。通过在多个数据集上的测试,研究人员发现,使...
Read More