GitHub开源项目SAMWISE实现了计算机视觉领域的重大突破,通过扩展Segment Anything Model(SAM)的核心能力,使其具备开放词汇分割(open-vocabulary segmentation)和长视频精确语义追踪功能。该技术突破性地解决了...
Read MoreYoloE 是一种创新的小型视觉模型,能够通过多种方式进行提示,以实现开放词汇检测。这意味着用户可以使用类别、图像和文本来决定模型应该检测的内容。特别值得一提的是,YoloE 的运行速度高达 300 帧每秒(fps),使...
Read More近日,一种名为OVFormer的新方法在开放词汇视频实例分割(VIS)领域引起了广泛关注。该方法解决了该领域的关键问题,改善了嵌入对齐,并利用基于视频的训练来提高时间一致性。OVFormer的核心优势在于它的开放性词汇...
Read MoreOV-DINO是一种新的开放词汇检测方法,它应对了整合多元化数据源和利用语言感知能力的挑战。这种方法的出现,解决了以往在处理大规模、复杂的数据集时,因为缺乏有效的语言感知工具和方法,而无法充分挖掘和利用数据...
Read More研究人员升级了流行的YOLO对象检测器,推出了YOLO-World,首次引入了开放词汇检测的概念。这种方法结合了视觉语言建模和大规模数据集训练,使其能够快速且准确地识别大量对象,即使在未特定训练的场景中也能表现出色...
Read More开放词汇注意力图谱(OVAM)是一种新兴的图像分割技术,它通过对类Stable Diffusion的文本到图像扩散模型进行改进,实现了对任意词汇生成注意力图的功能,打破了之前的限制。这意味着,通过OVAM,开发者和研究人员能...
Read More目标检测是识别物体及其边界框的过程。通常只能为训练前选择的一组固定物体进行检测。本研究介绍了一种实时方法,可以进行开放词汇目标检测,这意味着它可以检测任何在运行时指定的物体组合的边界框。该方法使用了一...
Read More研究人员开发了BriVIS,一种改进开放词汇视频实例分割(VIS)的方法。通过使用一种称为布朗运动桥的技术,BriVIS保持了物体运动在视频帧之间的上下文,从而实现了更准确的视频和文本对齐。
Read More