加州大学圣克鲁兹分校视觉、语言与行为实验室(VLAA)在GitHub开源了MedReason项目,这是一个专为提升大语言模型(LLM)医疗推理能力构建的大规模数据集。该数据集通过结构化临床案例、医学知识图谱和多模态数据,旨...
Read MoreDeepMind最新研究推出的Snowplow是一种创新的内核模糊测试工具,其核心在于采用了基于学习的白盒变异器(learned white-box mutator),能够显著提升测试变异的效率。该工具在Linux内核模糊测试中表现出色,不仅大幅...
Read MoreGeometry Crafter 是一种前沿的几何估计模型,它创新性地利用视频扩散作为先验信息,实现了时间维度上的一致性几何估计。该技术能够以约1.5帧/秒的速度完成完整点云估计,同时具备精确的相机姿态估计能力。这一突破...
Read MoreUniOcc是一个专为自动驾驶场景设计的统一框架,专注于交通流预测和运动轨迹预报。该框架的创新性在于支持多数据集联合训练,并能进行真实环境与合成场景的跨域评估,为自动驾驶系统的决策规划提供更可靠的预测能力。...
Read More腾讯ARC实验室最新发布的SEED-Bench-R1基准测试,为多模态大语言模型(MLLM)在复杂视频任务中的表现提供了系统评估框架。该研究重点关注强化学习(RL)和监督微调(SFT)等后训练方法,揭示了RL在视觉感知任务和数...
Read MoreEasi3R是一项突破性的3D视觉系统,专门针对高动态场景的三维重建进行了优化。该系统通过创新的运动物体掩蔽技术,将移动物体与背景分离学习,从而实现了比现有方法更精确的全场景重建。这一技术解决了动态场景重建中...
Read More近期,视频运动分割技术迎来重要进展,研究人员通过整合Dino和SAM2模型,成功将密集像素追踪应用于长期分割任务。这项技术突破解决了传统方法在复杂场景下跟踪精度不足的问题,通过像素级运动分析显著提升了分割稳定...
Read More近日,一项名为TIDE的创新技术在水下场景理解领域取得重要进展。该技术通过文本到图像转换和密集标注生成方法,能够创建具有一致像素级标签的高质量合成数据集。这一突破性技术解决了水下场景数据获取难、标注成本高...
Read More