漫话开发者 - UWL.ME 精选全球AI前沿科技和开源产品
2025-04-02 talkingdev

[开源]SEED-Bench-R1:基于强化学习的视频理解新基准

腾讯ARC实验室最新发布的SEED-Bench-R1基准测试,为多模态大语言模型(MLLM)在复杂视频任务中的表现提供了系统评估框架。该研究重点关注强化学习(RL)和监督微调(SFT)等后训练方法,揭示了RL在视觉感知任务和数...

Read More
2025-04-02 talkingdev

[论文推荐]Open-Reasoner-Zero:探索基础模型在强化学习推理中的规模化应用

强化学习(RL)领域长期存在一个关键问题:是否需要一个足够强大的基础模型来支持涌现式推理能力的形成?最新研究Open-Reasoner-Zero通过系统性实验验证了基础模型对RL推理的重要作用。该研究在多种规模化的RL训练场...

Read More
2025-04-02 talkingdev

Open Hands推出32B代码模型,在代理编码任务中超越更大规模模型

Open Hands团队最新发布的32B参数代码模型(Open Hands LM-32B)在强化学习(RL)训练框架下,基于Qwen架构实现了突破性进展。该模型在代理编码任务(agentic coding tasks)中的表现已超越许多参数规模更大的竞品,...

Read More
2025-04-01 talkingdev

[开源]Video-R1:基于规则的强化学习方法实现高效视频推理

Video-R1项目提出了一种创新的基于规则的强化学习(RL)方法,专门用于视频推理任务。该方法采用了GRPO(Generalized Reinforcement Learning with Policy Optimization)的时间变体,并引入了新的数据集来支持训练...

Read More
2025-03-26 talkingdev

[开源]FastCuRL-1.5B-Preview:通过课程强化学习推动慢思维推理模型的进步

FastCuRL-1.5B-Preview 是一种基于课程强化学习(Curriculum Reinforcement Learning)的慢思维推理模型,该模型在较少的训练步骤中实现了最先进的性能,展示了其在复杂推理任务中的潜力。相比传统方法,FastCuRL 通...

Read More
2025-03-19 talkingdev

[论文推荐]reWordBench:揭示奖励模型在提示词重述下的脆弱性

近期,一项名为reWordBench的研究揭示了当前流行的奖励模型在面对提示词(prompt)的简单重述时表现出的脆弱性。该研究不仅提出了一个基准测试,还探讨了一种潜在的策略,以增强这些模型的鲁棒性。奖励模型在人工智...

Read More
2025-03-11 talkingdev

利用强化学习教授语言模型解决数独问题

这项研究探索了如何通过强化学习来教授AI语言模型解决数独谜题,特别采用了Group Relative Policy Optimization (GRPO)技术,应用于Qwen 2.5等模型,无需依赖外部数据或更大模型的蒸馏。研究设计了一个多方面的奖励...

Read More
2025-03-11 talkingdev

AI语言模型通过强化学习掌握数独解题能力

最新研究展示了如何通过强化学习技术,使AI语言模型具备解决数独谜题的能力。该研究采用了Group Relative Policy Optimization (GRPO)方法,并在Qwen 2.5等模型上进行了实验,无需依赖外部数据或更大模型的蒸馏。研...

Read More
  1. 1
  2. 2
  3. 3
  4. Next Page