近日,一项名为Chain of Draft的创新推理策略在arXiv预印本平台引发关注。该技术通过精简推理路径设计,在保持与经典Chain-of-Thought方法相当甚至更高准确率的前提下,显著降低了大型语言模型的token消耗量。实验数...
Read More近日,一项名为'Attention Distillation for Diffusion-Based Image Stylization'的技术在图像生成领域取得重要进展。该技术通过利用预训练扩散模型中的自注意力特征,创新性地引入了注意力蒸馏损失函数,有效优化了...
Read More联邦学习领域迎来突破性进展,FUSED(Federated Unlearning with Sparse Efficient Deletion)系统通过创新的稀疏遗忘适配器技术,首次实现了联邦学习环境下的定向知识擦除与可逆操作。该技术通过在模型微调层植入轻...
Read More来自arXiv的最新研究论文提出ReLearn框架,通过创新的数据增强和微调技术,解决了大语言模型(LLMs)中的关键挑战——'遗忘学习'(Unlearning)。该技术可精准移除模型训练数据中的特定信息,同时保持整体性能,对数据...
Read More字节跳动团队最新发布的论文展示了如何在655k H100小时的“适度”计算预算下,训练出一个具有竞争力的70亿参数视频生成模型Seaweed-7B。该模型在多项时间敏感任务中表现出色,展现了强大的视频生成能力。这一突破不仅...
Read MoreEasi3R是一项突破性的3D视觉系统,专门针对高动态场景的三维重建进行了优化。该系统通过创新的运动物体掩蔽技术,将移动物体与背景分离学习,从而实现了比现有方法更精确的全场景重建。这一技术解决了动态场景重建中...
Read MoreGitHub最新开源项目Optimal Stepsize for Diffusion Sampling (OSS)通过动态规划算法优化了扩散模型的采样步长调度方案。这项突破性技术能在保持生成质量近乎无损的情况下,将采样速度提升10倍。该研究解决了扩散模...
Read More近日,一项名为Guidance-Free Training(GFT)的技术突破引发计算机视觉领域关注。该技术通过完全消除对Classifier-Free Guidance(CFG)的依赖,在保持生成质量的同时显著降低计算成本。与传统基于蒸馏的方法不同,...
Read More