漫话开发者 - UWL.ME 精选全球AI前沿科技和开源产品
2024-06-06 talkingdev

XRec:利用大语言模型提升可解释推荐系统

XRec是一种模型无关的框架,它利用大型语言模型的语言能力来增强可解释推荐系统。该框架的核心在于通过自然语言处理技术,为用户提供更透明和易理解的推荐理由。这不仅提升了用户对推荐系统的信任度,还为开发者提供...

Read More
2024-06-06 talkingdev

MatMul突破性成果:无需矩阵乘法的高性能大型语言模型

研究人员发现了一种方法,可以在无需进行矩阵乘法(MatMul)的情况下,依然保持大型语言模型的强大性能,甚至在参数规模达到数十亿时仍然有效。这一突破性技术有望显著提高计算效率,减少资源消耗,并为未来的AI模型...

Read More
2024-06-06 talkingdev

LlamaCare:革新医疗应用的大型语言模型

研究人员推出了LlamaCare,一个专门为医疗知识调优的大型语言模型(LLM)。LlamaCare不仅在处理医疗数据方面表现出色,还引入了扩展分类集成(ECI)技术,以解决LLM中的分类问题。该模型的推出标志着医疗领域人工智...

Read More
2024-06-04 talkingdev

FineWeb:高质量网络规模文本数据集发布

训练语言模型需要数万亿高质量的标记数据。关于这些数据集构建的信息大多未公开。然而,FineWeb团队在一篇精彩的博文中讨论了不同的数据集清理和过滤策略。文章的作者们发布了许多顶级的数据集,用于语言模型训练。...

Read More
2024-06-04 talkingdev

TrainAllInfAttn方法提升大语言模型在数据稀缺领域的表现

TrainAllInfAttn是一种能够在数据稀缺的专业领域提升大语言模型表现的方法。随着人工智能技术的不断发展,如何在数据有限的情况下仍能保持模型的高效性和准确性成为了一个重要的研究方向。TrainAllInfAttn通过优化模...

Read More
2024-06-03 talkingdev

Conifer开源:显著提升LLM对复杂指令的理解能力

Conifer通过引入一个专门的数据集和渐进式学习方法,显著提升了大规模语言模型(LLM)对复杂指令的理解能力。该方法不仅能让LLM在处理复杂任务时表现得更为精准,还能有效减少错误率。专门的数据集涵盖了各类复杂指...

Read More
2024-06-03 talkingdev

一年构建大型语言模型(LLMs)的洞见与心得

随着人工智能技术的飞速发展,利用AI构建产品和系统变得前所未有的便捷。然而,要超越简单的演示,打造真正有效的产品与系统,仍存在诸多挑战。本文通过作者一年来使用大型语言模型(LLMs)构建应用程序的经验,为读...

Read More
2024-06-03 talkingdev

揭秘AI破解者:对话ChatGPT及其他领先LLMs的越狱高手

Pliny the Prompter在OpenAI最新的基础模型GPT-4o发布后仅数小时就公布了破解方案。该破解允许用户使模型输出明确的受版权保护的歌词、制造禁令物品的说明、攻击策略计划以及基于X光的医疗建议。Pliny已在大约9个月...

Read More
  1. Prev Page
  2. 44
  3. 45
  4. 46
  5. Next Page