LLaVA-MORE 是一项关于多模态大语言模型(Multimodal Large Language Models, MLLMs)的系统性研究,旨在评估不同语言模型和视觉骨干网络在 MLLMs 中的表现,并提供一个可复现的框架来比较这些架构。通过该研究,研...
Read More近日,一篇发表在arXiv上的论文介绍了一种名为UniHDSA的统一关系预测方法,用于分层文档结构分析。该方法的核心创新在于通过一个单一模块同时处理多项任务,显著提高了文档结构分析的效率和准确性。UniHDSA技术的应...
Read More近日,一项名为TRG-Net的创新技术在动作分割领域取得了突破性进展。该技术通过利用文本衍生的关系图(Text-Derived Relational Graphs)来增强动作分割的精度,特别是在空间-时间建模和监督方面表现出色。动作分割是...
Read More近期,一项关于智能体任务时长能力的研究揭示了一个新的“摩尔定律”现象:智能体能够完成的任务长度每7个月翻倍。这一发现意味着,在未来的两年内,智能体将能够完成包含多个复杂步骤、时长达到数小时的任务。这一进...
Read MoreMeta 最近引入了一种新的基准测试,用于评估语言模型的推理能力和知识水平。该测试向语言模型提供一个长序列数据,并要求模型输出能够重新生成该序列并停止运行的最短程序。这一过程被称为 Kolmogorov 压缩,且在多...
Read More近期,一项名为reWordBench的研究揭示了当前流行的奖励模型在面对提示词(prompt)的简单重述时表现出的脆弱性。该研究不仅提出了一个基准测试,还探讨了一种潜在的策略,以增强这些模型的鲁棒性。奖励模型在人工智...
Read More近日,一款名为SmolDocling的新型文档OCR(光学字符识别)模型引发广泛关注。该模型以其极小的规模和高效的性能脱颖而出,成为文档处理领域的最新突破。SmolDocling不仅能够实现闪电般的处理速度,还具备足够的准确...
Read More近日,DriveLMM-o1项目发布了一款全新的数据集和基准测试,旨在提升自动驾驶系统中逐步视觉推理的准确性和决策能力。该数据集通过模拟复杂的驾驶场景,为人工智能驱动的自动驾驶技术提供了更加精细的视觉推理支持。D...
Read More