漫话开发者 - UWL.ME 精选全球AI前沿科技和开源产品
2024-03-04 talkingdev

探索LLMa的视频理解技术

这个仓库包含了一系列有用的资源,重点是大型语言模型在视频理解领域的应用。这些资源包括论文、代码和数据集,可以帮助研究人员和工程师更好地理解和应用LLMa模型。LLMa模型是一种基于自然语言处理的技术,在视觉和...

Read More
2024-03-04 talkingdev

关于LLM量化的全面研究

随着人工智能模型的不断发展,越来越多的研究人员开始研究如何在不影响模型准确性的前提下,提高模型的计算效率和内存利用率。LLM量化是一种后训练量化技术,可以使像OPT和LLaMA2这样的大型语言模型更具内存和计算效...

Read More
2024-03-01 talkingdev

论文:PromptMM使用LLM知识蒸馏的在线购物推荐系统

PromptMM是一种使用多模态知识蒸馏的在线购物推荐系统,可以改善像亚马逊和TikTok这样的平台上的推荐系统。它通过从各种内容类型(视觉、文本或声音)中蒸馏出重要特征,来解决用户偏好的不准确性,并简化系统,以防...

Read More
2024-03-01 talkingdev

Distilabel-框架用于对齐数据收集

Distilabel是为AI工程师设计的框架,使用人类反馈的强化学习方法(例如奖励模型和DPO)对大型语言模型进行对齐。 它主要专注于LLM微调和适应性。 Distilabel可协助数据收集,清洗和训练。

Read More
2024-03-01 talkingdev

LLMs使用Dual Chunk Attention处理10万个令牌

Dual Chunk Attention(DCA)扩展了大型语言模型(如Llama2 70B)的能力,使它们能够处理超过100k个令牌而无需额外的训练。它将注意力计算分解成块,增强了模型对短期和长期上下文的理解。

Read More
2024-02-29 talkingdev

Simulatrex-用LLM进行更准确的Agent生成

Simulatrex是一个开源项目,专注于生成代理基于建模(GABM)。它利用大型语言模型进行更准确的模拟。这项技术可以帮助模拟相当复杂的互动系统,比如社交网络或自然生态系统。Simulatrex的开发人员希望通过提供一个易...

Read More
2024-02-29 talkingdev

Databricks、Anyscale和微软的十大AI见解

本文报道了对AI领域前沿公司的创始人的采访,涵盖了他们对AGI到来的看法,如何思考LLMs以及创始人在产品中如何处理AI的简单策略。

Read More
2024-02-29 talkingdev

ShieldLM:支持自定义检测与决策解释的LLM安全检测器

最近,研究人员开发了一种名为ShieldLM的安全检测器,可帮助大型语言模型遵守人类安全标准,并提供自定义检测和解释决策的功能。该工具可检测模型是否存在安全问题,例如对不同种族、性别或群体的人有偏见,或者可能...

Read More
2024-02-29 talkingdev

FuseChat-将多个LLM的优势融合为更强单一模型

FuseChat推出了一种创新的方式,将多个大型语言模型的优势融合成一个更强大的模型,而不需要进行高成本的从头训练。

Read More
2024-02-28 talkingdev

VSP-LLM可视化语音识别框架开源

Visual Speech Recognition with Language Models(VSP-LLM)框架在视觉语音识别和翻译中引入了新的方法,通过集成LLMs来高效处理视频输入,通过去重嵌入视觉特征和使用低秩适配器进行成本效益训练。

Read More
  1. Prev Page
  2. 25
  3. 26
  4. 27
  5. Next Page