视觉语言模型(VLMs)在处理输入图像时,有时会遇到无法回答的问题。即便是最先进的VLMs,如GPT-4V,也面临这一挑战。本文提出了一个针对VLMs在面对无解问题时的基准测试,并探讨了一些可能的改进方向。研究者们通过...
Read MoreChain-of-Spot(CoS)技术近日提出了一种交互式推理方法,该方法大幅提升了大型视觉语言模型(LVLMs)处理和理解图像的能力。CoS通过识别图像中对于特定问题或指令的关键区域,使得LVLMs能够在不损失图像分辨率的前...
Read More该项目提出了一种改善大型视觉语言模型(例如LLaVA-1.5、QwenVL-Chat和Video-LLaVA)效率的方法,解决了“低效的注意力”问题。使用FastV这种新方法,通过修剪视觉令牌和学习自适应注意力模式来优化这些模型,从而显著...
Read MoreCogCoM是一种全新的通用视觉语言模型,它具有独特的操作链机制。这使得它能够通过主动调整输入图像来处理多轮视觉推理。该模型已经在GitHub上发布。
Read MoreMobileVLM V2是一系列为移动设备量身打造的先进视觉语言模型,通过创新的架构展示了显著的性能提升。新的MobileVLM V2拥有更快的推理速度,更高的准确性和更广泛的应用场景。MobileVLM V2不仅支持图像和文本之间的交...
Read More本篇论文揭示了大型视觉语言模型(LVLMs)为什么有时会错误地描述图像的原因,这种现象被称为多模态幻觉。语义转移偏差,特别是在段落中断处,是一个关键因素。研究人员发现,模型可能会出现误导性的预测,这些预测...
Read MoreLlava是一种视觉语言模型,最新版本为1.6,经过改进后,其OCR、推理和世界知识等方面有了很大提升,甚至在某些任务上可以与Gemini相媲美。Llava团队计划发布数据、代码和模型,以便更多人能够使用。
Read More